Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.252
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Curr Pharm Des ; 30(2): 151-160, 2024.
Article in English | MEDLINE | ID: mdl-38532324

ABSTRACT

BACKGROUND: The use of naturally occurring bioactive materials is getting great attention owing to their safety and environmental properties. Oily compounds, known as oleoresins, are expected to provide an important source for the natural products industry aiming to develop novel treatments for skin conditions. In this work, Capsicum annuum oleoresin nanoemulgel formulations have been prepared and investigated for their antibacterial and anticancer properties. METHODOLOGY: Several C. annuum oleoresin nanoemulgel formulations were prepared by incorporating a Carbopol 940 gel in a self-nanoemulsifying nanoemulsion consisting of C. annuum, tween 80, and span 80. The systems were characterized for particle size, polydispersity index (PDI), zeta potential, and rheology. The in vitro antimicrobial and cytotoxic activities of the optimum formulation were evaluated. RESULTS: The selected formulation is composed of 40% tween, 10% span 80, and 40% C. annuum oleoresin. This formulation produced a stable nanoemulsion with a narrow PDI value of 0.179 ± 0.08 and a droplet size of 104.0 ± 2.6 nm. Results of the in vitro antimicrobial studies indicated high potency of the systems against methicillin-resistant Staphylococcus aureus (MRSA) (zone of inhibition of 29 ± 1.9 mm), E. coli (33 ± 0.9 mm), K. pneumonia (30 ± 1.4 mm), and C. albicans (21 ± 1.5 mm), as compared to the reference antibiotic, ampicillin (18 ± 1.4 mm against K. pneumonia), and antifungal agent, fluconazole (12 ± 0.1 mm against C. albicans). Furthermore, cytotoxicity results, expressed as IC50 values, revealed that the oleoresin and its nanoemulgel had the best effects against the HepG2 cell line (IC50 value of 79.43 µg/mL for the nanoemulgel) and MCF7 (IC50 value of 57.54 µg/mL), and the most potent effect was found against 3T3 (IC50 value of 45.7 µg/m- L). On the other side, the system did not substantially exhibit activity against By-61 and Hela. CONCLUSION: C. annuum oleoresin and its nanoemulgel can be considered valuable sources for the discovery of new antibacterial, antifungal, and anticancer compounds in the pharmaceutical industry, especially due to their potent activity against various cancer cell lines as well as bacterial and fungal strains.


Subject(s)
Anti-Infective Agents , Capsicum , Methicillin-Resistant Staphylococcus aureus , Plant Extracts , Pneumonia , Humans , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Candida albicans
2.
Toxicon ; 240: 107640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325757

ABSTRACT

The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.


Subject(s)
Capsicum , Platelet Activating Factor/analogs & derivatives , Animals , Chickens , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Powders/pharmacology , Cytokines , Adipokines/pharmacology , Liver , Dietary Supplements , Immunoglobulins , Meat , Animal Feed/analysis
3.
Ultrason Sonochem ; 103: 106789, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309047

ABSTRACT

BACKGROUND: Solanum pseudocapsicum (PC) and Capsicum annum (CA) belongs to the family of Solanaceae. CA have been reported a rich source of phenolics whereas, the phenolics content of GA (gallic acid), SC (scopoletin), RA (rosmarinic acid), and RV (resveratrol) are yet to be reported for the PC-fruit. This study comparatively evaluates the phenolics profile for different parts (seeds and skin) and colors (green and red) of the PC- and CA-fruits using the green solvents of ethanol (ET), acetone (AC), water (H2O), and different combinations of these solvents. METHODOLOGY: Ultrasonics extraction (US) and UHPLC analysis were employed for phenolics evaluation. RESULTS: The USMD (method development) revealed the highest extract yield of 62 mg/100 mg for the PC-skin in ET:AC (70:30) solvent whereas, more phenolics (ppm) were observed for PC-seeds in ET:AC (50:50) solvent, particularly the SC (29.46) and GA (16.92). The UHPLCMDMV exhibited significant accuracies (100.70-114.14 %) with r2-values (0.9993-0.9997) in the linearity range of 1-200 ppm. The USMV (method validation) in PC- and CA-fruit parts and colors revealed more extract yields for the red skin part of the PC- (180.5 mg) and CA-fruit (126.2 mg). The phenolics were seen more in the green seeds of the PC-fruit (ppm); SC (276), GA (147.36), RV (28.54), and RA (23.87) followed by the green PC-skin, and red/green CA-seeds. The statistical models of mean differences, ANOVA, and Pearson's correlation showed significant differences for the PC-fruit parts (seeds and skin) and colors (red and green) vs extract yield and phenolics content (P = 0.05). CONCLUSION: PC-and CA-fruits were successfully evaluated where the seeds for the green fruits exhibited more phenolics amount.


Subject(s)
Capsicum , Solanum , Ultrasonics , Chromatography, High Pressure Liquid , Plant Extracts , Phenols/analysis , Solvents , Fruit/chemistry , Antioxidants/analysis , Ethanol , Camphor/analysis , Menthol/analysis , Acetone
4.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38373804

ABSTRACT

AIM: An extensive survey was done to clarify the prevalent Stemphylium species on Solanaceae plants across Brazil, and their host ranges. METHODS AND RESULTS: Eighty nine (89) Stemphylium isolates were obtained from naturally infected tomatoes as well as S. paniculatum, potato, eggplant, scarlet eggplant (Solanum aethiopicum var. gilo), Physalis angulata, and Capsicum species. Phylogenetic analyses encompassing the ITS-5.8S rDNA and glyceraldehyde-3-phosphate dehydrogenase genomic regions placed the isolates into two distinct groupings with either Stemphylium lycopersici or S. solani. Isolates of S. lycopersici (n = 81) were obtained infecting tomato, potato, eggplant, S. paniculatum, and P. angulata. Isolates of S. solani (n = 8) were detected in natural association with scarlet eggplant and tomato. Two isolates of S. lycopersici displayed a wide experimental host range in greenhouse bioassays, infecting accessions of 12 out of 18 species. Ocimum basilicum (Lamiaceae) was the only experimental host outside the Solanaceae family.


Subject(s)
Capsicum , Mitosporic Fungi , Solanum lycopersicum , Solanum tuberosum , Brazil , Phylogeny , Vegetables
5.
Food Funct ; 15(4): 2144-2153, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38305768

ABSTRACT

The hippocampal memory deficit stands out as a primary symptom in neurodegenerative diseases, including Alzheimer's disease. While numerous therapeutic candidates have been proposed, they primarily serve to delay disease progression. Given the irreversible brain atrophy or injury associated with these conditions, current research efforts are concentrated on preventive medicine strategies. Herein, we investigated whether the extracts of Capsicum annuum L. seeds (CSE) and Capsicum annuum L. pulp (CPE) have preventive properties against glutamate-induced neuroexcitotoxicity (one of the main causes of Alzheimer's disease) in HT22 hippocampal neuronal cells. Pretreatment with CSE demonstrated significant anti-neuroexcitotoxic activity, whereas CPE did not exhibit such effects. Specifically, CSE pretreatment dose-dependently inhibited the elevation of excitotoxic elements (intracellular calcium influx and reactive oxygen species; ROS) and apoptotic elements (p53 and cleaved caspase-3). In addition, the glutamate-induced alterations of neuronal activity indicators (brain-derived neurotrophic factor; BDNF and cAMP response element-binding protein phosphorylation; CREB) were significantly attenuated by CSE treatment. We also found that luteolin is the main bioactive compound corresponding to the anti-neuroexcitotoxic effects of CSE. Our results strongly suggest that Capsicum annuum L. seeds (but not its pulp) could be candidates for neuro-protective resources especially under conditions of neuroexcitotoxicity. Its underlying mechanisms may involve the amelioration of ROS-mediated cell death and BDNF-related neuronal inactivity and luteolin would be an active compound.


Subject(s)
Alzheimer Disease , Capsicum , Neuroprotective Agents , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Capsicum/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Luteolin/pharmacology , Camphor/metabolism , Camphor/pharmacology , Menthol/metabolism , Menthol/pharmacology , Neurons , Seeds/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism
6.
Phytother Res ; 38(3): 1191-1223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176910

ABSTRACT

Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.


Subject(s)
Antineoplastic Agents , Capsicum , Carcinoma , Humans , Capsaicin/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma/drug therapy , Camphor/pharmacology , Menthol , Cell Line, Tumor
7.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38227811

ABSTRACT

The microbiome has been linked to animal health and productivity, and thus, modulating animal microbiomes is becoming of increasing interest. Antimicrobial growth promoters (AGP) were once a common technology used to modulate the microbiome, but regulation and consumer pressure have decreased AGP use in food animals. One alternative to antimicrobial growth promoters are phytotherapeutics, compounds derived from plants. Capsaicin is a compound from the Capsicum genus, which includes chili peppers. Capsaicin has antimicrobial properties and could be used to manipulate the gastrointestinal microbiome of cattle. Both the rumen and fecal microbiomes are essential to cattle health and production, and modulation of either microbiome can affect both cattle health and productivity. We hypothesized that the addition of rumen-protected capsaicin to the diet of cattle would alter the composition of the fecal microbiome, but not the rumen microbiome. To determine the impact of rumen-protected capsaicin in cattle, four Holstein and four Angus steers were fed rumen-protected Capsicum oleoresin at 0 (Control), 5, 10, or 15 mg kg-1 diet dry matter. Cattle were fed in treatment groups in a 4 × 4 Latin Square design with a 21-d adaptation phase and a 7-d sample collection phase. Rumen samples were collected on day 22 at 0-, 2-, 6-, 12-, and 18-h post-feeding, and fecal swabs were collected on the last day of sample collection, day 28, within 1 h of feeding. Sequencing data of the 16s rRNA gene was analyzed using the dada2 pipeline and taxa were assigned using the SILVA database. No differences were observed in alpha diversity among fecal or rumen samples for either breed (P > 0.08) and no difference between groups was detected for either breed in rumen samples or for Angus steers in fecal samples (P > 0.42). There was a difference in beta diversity between treatments in fecal samples of Holstein steers (P < 0.01), however, a pairwise comparison of the treatment groups suggests no difference between treatments after adjusting for multiple comparisons. Therefore, we were unable to observe substantial overall variation in the rumen or fecal microbiomes of steers due to increasing concentrations of rumen-protected capsaicin. We do, however, see a trend toward increased concentrations of capsaicin influencing the fecal microbiome structure of Holstein steers despite this lack of significance.


The microbiome is the collection of microbes present in an animal's body and has been discovered to be directly connected to animal health and productivity. In production animals, such as feedlot cattle, the microbiome can be modulated by antimicrobials to promote growth, but increasing consumer pressure to reduce antimicrobial use has producers seeking alternatives. Capsaicin is a phytotherapeutic derived from chili peppers that can be used to modulate the microbiome due to its antimicrobial properties. Eight steers were fed rumen-protected Capsicum oleoresin to determine its effect on average daily gain. In addition, rumen and fecal samples were collected for microbiome testing. No differences were detected in the rumen microbiomes between cattle fed capsaicin (treatment) or those that received no capsaicin (control). While no overall effect was observed on the fecal microbiome of cattle fed different doses of capsaicin or control, we did observe changes in fecal beta diversity due to capsaicin treatment in Holstein steers fed greater doses. The fecal microbiome structure of Holsteins fed greater dosages of capsaicin differed from those fed control or low doses, as observed by the presence of two distinct clusters. This observation suggests an impact of greater doses of capsaicin treatment on microbiome structure.


Subject(s)
Anti-Infective Agents , Capsicum , Microbiota , Plant Extracts , Cattle , Animals , Capsicum/chemistry , Capsaicin/pharmacology , Rumen/physiology , RNA, Ribosomal, 16S/genetics , Animal Feed/analysis , Plant Breeding , Diet/veterinary
8.
J Med Food ; 27(1): 88-94, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236694

ABSTRACT

Capsicum annuum var. abbreviatum (CAAE), which is in the genus Capsicum L. (Solanaceae), was found to be richer in polyphenols and flavonoids than other prevalent peppers of Capsicum annuum var. angulosum and Capsicum annuum. L. Yet, it is still unclear how CAAE reduces inflammation. In this study, we used the lipopolysaccharide-stimulated RAW264.7 macrophage cell line and bone marrow-derived macrophages to assess its anti-inflammatory activities. Initially, we discovered that CAAE decreased the levels of nitric oxide and inducible nitric oxide synthase. In addition, CAAE decreased the intracellular reactive oxygen species levels and increased the nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 compared with the phenotype of M2 macrophages. CAAE inhibited the activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases, c-Jun N-terminal kinases, and p38 MAPKs. CAAE also inhibited the translocation of nuclear factor kappa B into nuclear, hence preventing the production of proinflammatory cytokines. Therefore, we suggest that CAAE might have potential as a candidate therapeutic agent for inflammatory diseases.


Subject(s)
Capsicum , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Macrophages/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , NF-kappa B/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Phenotype , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism
9.
Nat Prod Res ; 38(4): 679-684, 2024.
Article in English | MEDLINE | ID: mdl-36905171

ABSTRACT

Neglected tropical diseases are significant causes of death and temporary or permanent disability for millions living in developing countries. Unfortunately, there is no effective treatment for these diseases. Thus, this work aimed to conduct a chemical analysis using HPLC/UV and GC/MS to identify the major constituents of the hydroalcoholic extracts of Capsicum frutescens and Capsicum baccatum fruits, evaluating these extracts and their constituents' schistosomicidal, leishmanicidal and trypanocidal activities. The results obtained for the extracts of C. frutescens are better when compared to those obtained for C. baccatum, which can be related to the different concentrations of capsaicin (1) present in the extracts. The lysis of trypomastigote forms results for capsaicin (1) led to a significant value of IC50 = 6.23 µM. Thus, the results point to capsaicin (1) as a possible active constituent in these extracts.


Subject(s)
Capsicum , Capsaicin/pharmacology , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/analysis , Camphor/analysis , Menthol/analysis , Fruit/chemistry
10.
Article in English | MEDLINE | ID: mdl-37939898

ABSTRACT

The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1ß, il-6, il-8, and il-10), transforming growth factor-ß, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.


Subject(s)
Capsicum , Cichlids , Fish Diseases , Animals , Capsicum/genetics , Capsicum/metabolism , Antioxidants/metabolism , Disease Resistance , Cichlids/genetics , Immunity, Innate , Dietary Supplements , Diet/veterinary , Glutathione Peroxidase/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Gene Expression , RNA, Messenger/metabolism , Animal Feed/analysis , Fish Diseases/prevention & control
11.
J Environ Manage ; 351: 119759, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091729

ABSTRACT

While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.


Subject(s)
Capsicum , Hydrogen Sulfide , Sulfides , Hydrogen Sulfide/pharmacology , Hydrogen Peroxide , Antioxidants , Chlorophyll , Dietary Supplements , Phosphates , Seedlings
12.
J Dairy Sci ; 107(2): 857-869, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709037

ABSTRACT

This study aimed to investigate the effect of administering a standardized blend of cinnamaldehyde, eugenol, and Capsicum oleoresin (CEC) to lactating dairy cattle for 84 d (i.e., 12 wk) on enteric CH4 emission, feed intake, milk yield and composition, and body weight. The experiment involved 56 Holstein-Friesian dairy cows (145 ± 31.1 d in milk at the start of the trial; mean ± standard deviation) in a randomized complete block design. Cows were blocked in pairs according to parity, lactation stage, and current milk yield, and randomly allocated to 1 of the 2 dietary treatments: a diet including 54.5 mg of CEC/kg of DM or a control diet without CEC. Diets were provided as partial mixed rations in feed bins, which automatically recorded individual feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CO2, CH4, and H2. Feeding CEC decreased CH4 yield (g/kg DMI) by on average 3.4% over the complete 12-wk period and by on average 3.9% from 6 wk after the start of supplementation onward. Feeding CEC simultaneously increased feed intake and body weight, and tended to increase milk protein content, whereas no negative responses were observed. These results must be further investigated and confirmed in longer-term in vivo experiments.


Subject(s)
Acrolein/analogs & derivatives , Capsicum , Lactation , Plant Extracts , Female , Pregnancy , Cattle , Animals , Lactation/physiology , Eugenol/pharmacology , Eugenol/metabolism , Capsicum/metabolism , Methane/metabolism , Diet/veterinary , Body Weight , Rumen/metabolism
13.
Braz. j. biol ; 84: e258084, 2024. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360229

ABSTRACT

Food loss due to contamination caused by fungi has much impact on agriculture and leads to significant economic losses. Synthetic and natural fungicides have been used for avoiding losses of several food products due to fungal contamination. As a result, species of the genus Capsicum have been used for preserving food because of their chemical compounds with antifungal activity. Therefore, this study aimed at identifying some phenolic compounds found in both ethyl acetate extract (EAE) and methanolic extract (ME) from habanero pepper (C. chinense) ripe fruit by liquid chromatography tandem mass spectrometry with electrospray ionization (LC-ESI-MS/MS) and at evaluating their antifungal activities against fungi Sclerotinia sclerotiorum, Rhizopus stolonifer and Colletotrichum gloeosporioides. Extracts resulted from a sequential process of maceration. Antifungal activity was evaluated by the disk diffusion method (DDM) at the following doses of both diluted extracts: 25 µL, 50 µL, 100 µL and 200 µL. The chemical analysis showed that there were protocatechuic acid, gentisic acid, vanillic acid, kaempferol-3-O-robinobiosideo and naringenin in both extracts. EAE showed high inhibition of mycelial growth at both doses 100µL and 200µL against the three fungi while methanolic exhibited weak activity even at the highest dose under investigation. However, further in-depth studies are needed to reinforce their uses and practical applications to the agricultural field.


As perdas de alimentos por contaminação causada por fungos são de grande impacto negativo para a agricultura, gerando altos prejuízos econômicos. Para evitar as perdas de diversos produtos alimentícios pela contaminação fúngica são utilizados fungicidas sintéticos e naturais. As espécies do gênero Capsicum são usadas há muitos anos para auxiliar na conservação de alimentos por possuírem substâncias químicas com ação antifúngica entre outras. Neste contexto, o objetivo deste estudo foi identificar alguns compostos fenólicos por cromatografia líquida de alta eficiência acoplada à espectrometria de massas sequencial (LC-ESI-MS/MS) presentes nos extratos acetato de etila (EAE) e metanólico (ME) dos frutos maduros da pimenta biquinho (C. chinense) e avaliar atividade antifúngica de EAE e ME contra os fungos Sclerotinia sclerotiorum, Rhizopus stolonifer e Colletotrichum gloeosporioides. Os extratos foram obtidos de forma sequencial, utilizando o procedimento de maceração. A atividade antifúngica foi avaliada seguindo a metodologia de difusão em disco, nas doses de 25 µL, 50 µL, 100 µL e 200 µL de cada extrato diluído. A análise química evidenciou a presença de ácido protocatequico, ácido gentisico, ácido vanílico, kaempferol-3-O-robinobiosídeo e naringenina em ambos os extratos. EAE revelou maior poder de inibição do crescimento micelial nas doses de 100µL e 200µL contra os três fungos testados, enquanto ME exibiu fraca atividade inclusive na maior dose investigada. Entretanto, estudos mais aprofundados ainda são necessários para consolidar seu uso e aplicação prática na área agronômica.


Subject(s)
Capsicum , Phenolic Compounds , Antifungal Agents
14.
Nutr Res ; 122: 33-43, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141553

ABSTRACT

Capsiate (CAP) is a nonpungent capsaicin analog (Capsicum annuum L. extract) that has been studied as a potential antiobesity agent. However, the interaction between chronic CAP supplementation and resistance training is not clear. The purpose of this study was to examine the changes in adipose tissue-derived hormones, body composition, appetite, and muscle strength after 10 weeks of resistance training, combined with chronic CAP supplementation in healthy untrained men. We hypothesized that CAP could induce higher benefits when combined with resistance training after 10 weeks of intervention compared to resistance training alone. Twenty-four young men (age, 22.0 ± 2.9) were randomized to either capsiate supplementation (CAP = 12 mg/day) or placebo (PL), and both groups were assigned to resistance training. Body composition, leptin and adiponectin concentrations, subjective ratings of appetite, energy intake, and exercise performance were assessed at before and after 10 weeks of progressive resistance training. There was a significant increase in body mass (P < .001), fat-free mass (CAP: 58.0 ± 7.1 vs. post, 59.7 ± 7.1 kg; PL: pre, 58.4 ± 7.3 vs. post, 59.8 ± 7.1 kg; P < .001), resting metabolic rate (CAP: pre, 1782.9 ± 160.6 vs. post, 1796.3 ± 162.0 kcal; PL: pre, 1733.0 ± 148.9 vs. post, 1750.5 ± 149.8 kcal; P < .001), maximal strength at 45 leg press (P < .001) and bench press (P < .001) in both groups, but no significant (P > .05) supplementation by training period interaction nor fat mass was observed. For subjective ratings of appetite, energy intake, leptin, and adiponectin, no significant effect of supplementation by training period interaction was observed (P > .05). In conclusion, 10 weeks of resistance training increased total body weight, muscle mass, and maximum strength in healthy untrained men; however, CAP supplementation (12 mg, 7 days per week) failed to change adipose tissue-derived hormones, appetite, body composition and muscle strength in this population. Registered under Brazilian Registry of Clinical Trials (RBR-8cz9kfq).


Subject(s)
Capsaicin/analogs & derivatives , Capsicum , Resistance Training , Male , Humans , Young Adult , Adult , Leptin/metabolism , Dietary Supplements , Appetite , Adiponectin , Adipose Tissue/metabolism , Body Composition , Muscle Strength , Double-Blind Method , Camphor/metabolism , Camphor/pharmacology , Menthol/metabolism , Menthol/pharmacology , Plant Extracts/pharmacology , Muscle, Skeletal
15.
J Agric Food Chem ; 72(1): 559-565, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134368

ABSTRACT

The biosynthesis pathway of capsaicinoids includes the conversion of vanillin to vanillylamine, where putative aminotransferase (pAMT) is thought to be the enzyme responsible in Capsicum plants. The objectives of this study were to prove that pAMT is the enzyme responsible for this conversion in plants and to clarify its catalytic properties using biochemical methods. Both an extract of habanero placenta and recombinant pAMT (rpAMT) constructed by using an Escherichia coli expression system were able to convert vanillin to vanillylamine in the presence of γ-aminobutyric acid as an amino donor and pyridoxal phosphate as a coenzyme. Conversion from vanillin to vanillylamine by the placenta extract was significantly attenuated by adding an anti-pAMT antibody to the reaction system. The amino donor specificity and affinity for vanillin of rpAMT were similar to those of the placenta extract. We thus confirmed that pAMT is the enzyme responsible for the conversion of vanillin to vanillylamine in capsaicinoid synthesis in Capsicum fruits. Therefore, we propose that pAMT should henceforth be named vanillin aminotransferase (VAMT).


Subject(s)
Capsicum , Capsicum/metabolism , Capsaicin/metabolism , Transaminases/genetics , Transaminases/metabolism , Vegetables/metabolism , Plant Extracts/metabolism
16.
Cells ; 12(21)2023 11 04.
Article in English | MEDLINE | ID: mdl-37947651

ABSTRACT

Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.


Subject(s)
Capsicum , Neoplasms , Humans , Capsaicin/pharmacology , Fruit/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Biology
17.
Molecules ; 28(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894554

ABSTRACT

As an indispensable process in the microencapsulation of active substances, emulsion preparation has a significant impact on microencapsulated products. In this study, five primary emulsions of paprika oleoresin (PO, the natural colourant extracted from the fruit peel of Capsicum annuum L.) with different particle sizes (255-901.7 nm) were prepared using three industrialized pulverization-inducing techniques (stirring, ultrasound induction, and high-pressure homogenization). Subsequently, the PO emulsion was microencapsulated via spray drying. The effects of the different induction methods on the physicochemical properties, digestive behaviour, antioxidant activity, and storage stability of PO microencapsulated powder were investigated. The results showed that ultrasound and high-pressure homogenization induction could improve the encapsulation efficiency, solubility, and rehydration capacity of the microcapsules. In vitro digestion studies showed that ultrasound and high-pressure homogenization induction significantly increased the apparent solubility and dissolution of the microcapsules. High-pressure homogenization induction significantly improved the antioxidant capacity of the microcapsules, while high-intensity ultrasound (600 W) induction slowed down the degradation of the microcapsule fats and oils under short-term UV and long-term natural light exposure. Our study showed that ultrasound and high-pressure homogenization equipment could successfully be used to prepare emulsions containing nanoscale capsicum oil resin particles, improve their functional properties, and enhance the oral bioavailability of this bioactive product.


Subject(s)
Capsicum , Capsules/chemistry , Emulsions/chemistry , Plant Extracts , Oils
18.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836615

ABSTRACT

The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the simultaneous extraction and analysis through high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and structural bioinformatics based on the protein modelling and molecular simulations of protein-ligand docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello (3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of the homotetrameric human TRPV1, and it was used for docking simulations with the compounds detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The simulations indicate that different capsaicinoids can interact with the receptor, providing details on the molecular interaction, with similar predicted binding energy values. These results offer new insights into the interaction of capsaicinoids with TRPV1 and their possible actions.


Subject(s)
Capsicum , Humans , Capsicum/chemistry , Capsaicin/pharmacology , Capsaicin/analysis , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Mass Spectrometry , Phenols/pharmacology , Phenols/analysis , Fruit/chemistry
19.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687171

ABSTRACT

Peppers are among the spices possessing a wide plethora of biological properties due to their excellent supply of health-related metabolites. Capsicum annuum L. (Solanaceae) is cultivated throughout Tunisia, and there is a shortage of information on the identification of the secondary metabolites in the seeds of this species as well as on their biological activities. In the present work, we intended to undertake a chemical characterization of the bioactive compounds from the hydro-methanolic seed extract of C. annuum as well as an evaluation of its broad spectrum of antimicrobial and antioxidant activities. The chemical profile was evaluated by RP-HPLC-DAD-QTOF-MS/MS, whereas the total phenol and flavonoid content, antioxidant, and antimicrobial activities were determined in in vitro assays. In this work, 45 compounds belonging to various phytochemical classes, such as organic acids (2), phenolic compounds (4 phenolic acids and 5 flavonoids), capsaicinoids (3), capsianosides (5), fatty acids (13), amino acids (1), sphingolipids (10), and steroids (2) were identified in the hydro-methanolic seed extract of C. annuum. The phenolic and flavonoid content (193.7 mg GAE/g DW and 25.1 mg QE/g DW, respectively) of the C. annuum extract correlated with the high antiradical activity (IC50 = 45.0 µg/mL), reducing power (EC50 = 61.3 µg/mL) and chelating power (IC50 = 79.0 µg/mL) activities. The hydro-methanolic seed extract showed an important antimicrobial activity against seven bacterial and four fungal strains. In fact, the inhibition zones (IZs) for bacteria ranged from 9.00 ± 1.00 mm to 12.00 ± 0.00 mm; for fungi, the IZs ranged from 12.66 ± 0.57 mm to 13.66 ± 0.57 mm. The minimal inhibition concentration and minimal bactericidal concentration values showed that the extract was more effective against fungi than bacteria.


Subject(s)
Capsicum , Antioxidants/pharmacology , Tandem Mass Spectrometry , Phenols/pharmacology , Flavonoids/pharmacology , Methanol , Plant Extracts/pharmacology
20.
Int J Biol Macromol ; 253(Pt 3): 126690, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673156

ABSTRACT

The softening of acidified chili peppers induced by processing and storage has become a major challenge for the food industry. This study aims to explore the impact of pasteurization techniques, thermal processing (TP), high-pressure processing (HPP), addition of sodium metabisulfite (SMS), and storage conditions (25 °C, 37 °C, and 42 °C for 30 days) on the texture-related properties of acidified chili pepper. The results showed that the textural properties of samples were destructed by TP (the hardness of samples decreased by 19.43 %) but were less affected by HPP and SMS. Compared with processing, storage temperature had a more dominant impact on texture and pectin characteristics. With increased storage temperature, water-solubilized pectin fraction content increased (increased by 160.99 %, 136.74 %, and 13.01 % in TP, HPP, and SMS-stored groups, respectively), but sodium carbonate-solubilized pectin fraction content decreased (decreased by 29.84 %, 26.81 %, and 8.60 % in TP-, HPP-, and SMS-stored groups, respectively), especially in TP-stored groups. Multivariate data analysis showed that softening was more closely related to pectin conversion induced by acid hydrolysis and pectinase depolymerization. This finding offers new perspectives for the production of acidified chili pepper.


Subject(s)
Capsicum , Pasteurization , Pectins , Temperature , Antioxidants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL